ЛЕКЦИЯ 4

Электрические свойства материалов. Температурная зависимость электропроводности и подвижности носителей заряда

По характеру воздействия электрического поля вещества разделяются на проводники, полупроводники и диэлектрики. Ниже приведена классификация по удельному сопротивлению:

Проводники:

 10^{-6} – 10^4 Ом \times СМ примеры: ho_{Ag} = $1,58\times10^{-6}$ Ом \times СМ Нихром ho= $1,05\times10^{-4}$ Ом \times СМ

Полупроводники:

 10^{-4} – 10^{10} Ом ×см пример: ρ_{Ge} = 10^{-4} ...47 Ом×см

Диэлектрики:

 $10^{8} extstyle-10^{15}\, extstyleOm imes extstyle C$ люда ho= $10^{13} extstyle...$ $10^{16}\, extstyle Om imes extstyle extstyle extstyle A$

Металлы и полупроводники помимо величины удельного сопротивления отличаются также температурной зависимостью проводимости. В металлах удельное сопротивление падает почти по линейному закону (рис. 1):

$$\rho(T) = \rho_0(T)[1 + \alpha(T - T_0)]$$

где T_0 и T – начальная и последующая температуры, α (K^{-1}) – температурный коэффициент сопротивления (ТКС). В таблице 1 приведены значения теплопроводности, удельного сопротивления, их произведения и отношения, а также температурный коэффициент α .

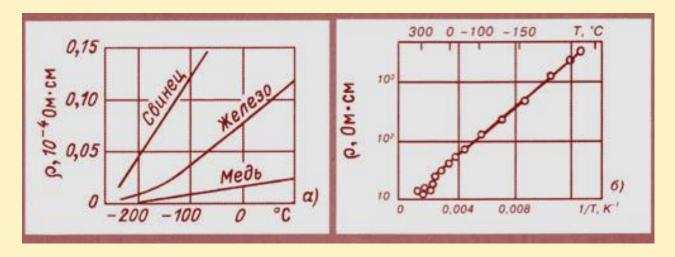


Рисунок 1 – Зависимость удельного сопротивления металлов (a) и кремния (б) от температуры

Таблица 1 – Удельное сопротивление и температурный коэффициент электропроводности некоторых металлов и сплавов

Metal	k W/mK	ρ $10^{-8}\Omega m$	k·ρ 10 ⁻⁸ WΩ/K	k/ρ $10^8 W/m^2 \Omega K$	α 10 ⁻³ K ⁻¹
Ag	427	1.6	683	266.9	3.8
Al	226	2.8	633	80.7	4.5
Alumel	31	30	930	1.0	1.9
Au	318	2.4	763	132.5	3.7
Chromel	20	71	1420	0.3	0.3
Co	100	6.3	630	15.9	6.6
Constantan	25	50	1250	0.5	0.0
Cu	394	1.7	670	231.8	4.3
Inconel	15	100	1500	0.2	?
Manganin	22	45	990	0.5	0.0
Мо	140	6	840	23.3	4.4
Nb	91	6.9	628	13.2	2.6
Ni	90	7	630	12.9	6.8
NiCr	13.4	108	1447	0.1	0.4
Pa	72	10.8	778	6.7	4.2
Phosphorbronze	35	20.6	721	1.7	4.2
Pb	60	10	600	6.0	0.6
Pt	72	11	792	6.5	3.9
Pt90Ir10	31	25	775	1.2	1.3
Pt90Rh10	38	19	722	2.0	1.7
Stainless steel	16	70	1120	0.2	3.0
Ti	22	54	1188	0.4	3.8
v	36	19	684	1.9	3.9
W	170	6	1020	28.3	4.8
Zn	120	6	720	20.0	4.2

В полупроводниках с увеличением температуры проводимость увеличивается по экспоненциальному закону:

$$\sigma(T) = \sigma_0 exp\left(-\frac{E_g}{2kT}\right) + \sigma_1 exp\left(-\frac{E_a}{kT}\right)$$

Здесь первое слагаемое представляет собой собственную проводимость, второе – примесную, σ_0 и σ_1 – некоторые слабо изменяющиеся составляющие проводимости, не зависящие от температуры, E_g (эВ) – ширина запрещенной зоны, E_a (эВ) – энергия температурной активации примесной проводимости, k=8,61×10⁻⁵ эВ/К – постоянная Больцмана. На рис. 2 представлены температурные зависимости концентрации носителей заряда (НЗ) N и электропроводности в донорном полупроводнике. Если прологарифмировать предыдущую формулу, получим:

$$ln[\sigma(T)] = \ln(\sigma_0) - \frac{E_g}{2k} \frac{1}{T} + \ln(\sigma_1) - \frac{E_a}{k} \frac{1}{T}$$

Концентрация НЗ, а в рассматриваемом случае донорного полупроводника это электроны, зависит от температуры следующим образом:

$$n = \sqrt{\frac{N_C N_D}{2}} \times exp^{-\frac{E_C - E_D}{kT}}$$

Рисунок 2 – Температурные зависимости концентрации носителей заряда и электропроводности в донорном полупроводнике

Здесь N_C – эффективная плотность состояний в зоне проводимости:

$$N_C = 2\left(\frac{2\pi m_n^* kT}{h^2}\right)^{3/2}$$

Эффективная плотность состояний в валентной зоне N_V определяется аналогично:

$$N_V = 2\left(\frac{2\pi m_p^* kT}{h^2}\right)^{3/2}$$

 m_n^* и m_p^* – эффективные массы электронов и дырок.

$$p = \sqrt{\frac{N_c N_a}{2}} exp\left(-\frac{E_a}{kT}\right)$$

где Na – концентрация, а Ea – энергия активации акцепторных уровней. Для уровня Ферми в донорном полупроводнике можно записать:

$$F = \frac{E_C + E_D}{2} + \frac{1}{2}kT \times ln\left(\frac{N_D}{2N_C}\right)$$

В случае $m_p^* = m_n^*$ положение уровня Ферми не зависит от температуры и F лежит в середине запрещенной зоны. При $m_p^* > m_n^*$ уровень Ферми с повышением температуры линейно смещается к дну зоны проводимости, а при $m_p^* < m_n^* - \kappa$ потолку валентной зоны (на рис. 3 кривые 1 и 2 соответственно).

Если полупроводник имеет несколько примесей, то на графике температурной зависимости концентрации и проводимости должно появиться несколько ступенек. Рабочая область полупроводниковых приборов ограничена температурами T_i и T_S .

Концентрация носителей заряда в невырожденном собственном полупроводнике n_i зависит от температуры T (рис. 4, табл. 2), ширины запрещенной зоны Eg, значений эффективных масс электронов m_n * и дырок m_p * и не зависит от положения уровня Ферми F:

$$n_{i} = (n_{0}p_{0})^{\frac{1}{2}} = (N_{C}N_{V})^{\frac{1}{2}}e^{-\frac{E_{C}-E_{V}}{2kT}} = 2\left(\frac{2\pi k}{h^{2}}\right)^{\frac{3}{2}}\left(m_{n}^{*}m_{p}^{*}\right)^{\frac{3}{4}}T^{\frac{3}{2}}e^{-\frac{E_{g}}{2kT}} =$$

$$= 4.9 \times 10^{15} \times \frac{m_{n}^{*}m_{p}^{*\frac{3}{4}}}{m_{0}^{2}}T^{\frac{3}{2}}e^{-\frac{E_{g}}{2kT}}$$

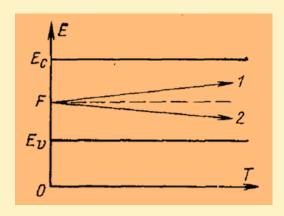


Рисунок 3 – Изменение уровня Ферми с температурой в полупроводнике

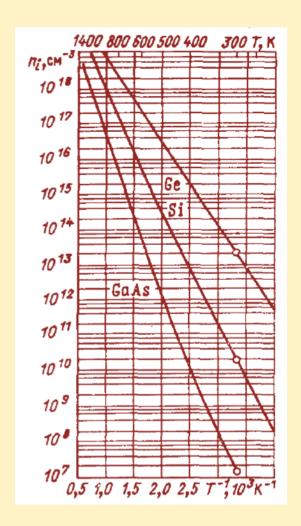


Рисунок 4 – Зависимость собственной концентрации носителей заряда в германии, кремнии и арсениде галлия от обратной температуры

Таблица 2 - Собственные концентрации НЗ в кремнии и антимониде индия

Material	m_n *	m_p *	Eg, eV	n_i , cm ⁻³
Si	$1,08m_0$	$0,56m_0$	1,11	$1,9 \times 10^{10}$
InSb	$0,013m_0$	$0,6m_0$	0,18	2×10 ¹⁶

Энергия активации для собственного полупроводника Ea = Eg/2.

Температура, при которой в n-типа полупроводнике F= E_d , носит название температуры насыщения примеси T_S . Ее можно определить из условия:

$$T_{S} = \frac{E_{C} - E_{d}}{kln\left(\frac{N_{C}}{N_{d}}\right)} = \frac{\Delta E_{a}}{kln\left(\frac{N_{C}(T)}{8N_{d}}\right)}$$

 T_S тем ниже, чем меньше энергия ионизации ($E_C - E_d$) и концентрация донорной примеси N_d и чем больше эффективная масса электронов, определяющая величину N_C . При малых значениях ($E_C - E_d$) насыщение примеси наступает при очень низких температурах. Например, в электронном германии, легированном сурьмой в количестве N_d =10¹⁶ см⁻³, для которой энергия ионизации равна 0,0096 эВ, насыщение наступает уже при T_S = 32K.

Температура T_i , при которой наступает собственная проводимость у донорного полупроводника, тем ниже, чем меньше ширина запрещенной зоны и концентрация примеси и чем больше значение эффективных масс Н3:

$$T_i = \frac{E_g}{2k \times ln\left(\frac{N_C N_V}{N_d^2}\right)}$$

$$\sigma_n = -\frac{e\hbar \tau_n}{m_n^*} E$$
 $\sigma_p = -\frac{e\hbar \tau_p}{m_p^*} E$

Здесь E – электрическое поле, τ_n и τ_p – средние времена релаксации электронов и дырок, соответственно. Подвижность электронов, проводимость и время релаксации связаны между собой соотношениями:

$$\mu_n = \frac{e < \tau_n >}{m_n^*}$$
 $\sigma_n = en\mu_n$

Температурная зависимость подвижности в общем виде задается соотношением (рис. 5):

$$\mu = \frac{1}{\frac{T^{-3/2}}{a} + \frac{T^{3/2}}{b}}$$

Первое слагаемое в знаменателе отвечает за собственную проводимость, второе относится к примесной проводимости.

При рассеянии на фононах:

$$\mu = \frac{\sqrt{2}\varepsilon^2 \sqrt{m^*} E^{3/2}}{\pi Z^2 e^4 N ln \left[1 + \left(\frac{\varepsilon E}{Z e^2 N^{1/3}} \right)^2 \right]}$$

Здесь N – концентрация примеси, Z – число электронов.

При рассеянии на ионах примеси:

$$\mu = \frac{8\sqrt{2}\varepsilon^{2}(kT)^{3/2}}{\pi^{3/2}Z^{2}e^{3}N\sqrt{m^{*}}ln\left[1 + \left(\frac{3\varepsilon kT}{Ze^{2}N^{1/3}}\right)^{2}\right]}$$

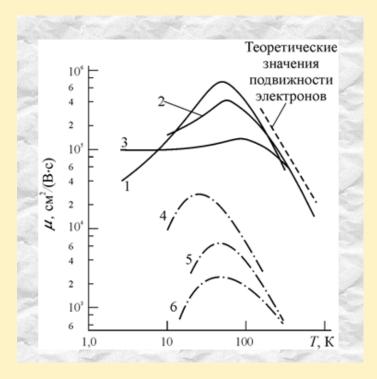


Рисунок 5 – Температурные зависимости подвижности электронов и дырок в InSb